
Dependency Injection
in practice

Kristijan Horvat
Software Architect

twitter.com/khorvat2

What is Dependency Injection (DI)

Dependency injection is a software design pattern that
implements inversion of control for software libraries.

Wikipedia

Dependency Injection is a set of software design principles
and patterns that enable us to develop loosely coupled code.

Mark Seemann

What is Inversion of Control (IoC)

Inversion of Control (IoC) describes a design in which custom-
written portions of a computer program receive the flow of
control from a generic, reusable library.

Wikipedia

Inversion of Control is a common pattern among developers that
helps assemble components from different projects into a cohesive
application.

~ based on http://www.martinfowler.com/articles/injection.html (reworded).
Martin Fowler

When to use DI & IoC ?

High Level perspective

- when your software stack supports DI & IoC

- when you have mid to large projects or teams

- when we have long running projects

- when your project tend to change over time (Agile)

- when you plan to use unit testing

- when you plan to deploy projects to cloud (Amazon, Azure, etc.)

When to use DI & IoC ?

Low Level perspective

- when we want to avoid tight coupling of objects

- when we need to easily add new functionality to code (Extensibility)

- when we need to choose what components we use at run-time rather than compile-
time (Late binding)

- when we want multiple development teams to work on the same project (Parallel
Development)

- when we want independent components and isolated functionality (Maintainability)

- when we need to use mocks for unit testing (Testability)

- when we want to enforce SRP (single responsibility principle)

DI Containers

PHP

- Laravel IoC

- PHP DI

- Zend DI

- Symfony

- Dice

JavaScript

- di-lite

- inverted

- wire.js

- bottle.js

- pimple

- cujo.js (Spring like)

.NET
- AutoFac
- SimpleInjector
- Ninject
- StructureMap
- Castle Windsor
- Unity
- Spring.NET

Java

- Pico container

- Guice

- Spring

- Silk DI

How to choose DI container ?

Things to consider while choosing DI container

- easy to understand API

- easy and readable configuration

- performance

- plugin support

- container should be widely accepted

- extensions (the more the merrier)

- large community (maybe the most important)

DI in Practice - GitHub Repo

1. Prerequisites

1. .Net 4.x

2. VS 2013

3. Git

2. Repository setup

1. git clone https://github.com/khorvat/DependencyInjectionInPractice

2. git checkout master

3. git checkout tags/## (git checkout tags/01)

Note: Slides that have Tag marker in the top right corner follows the GitHub code samples.

Tag: ##

So how can we use DI ?
Dependency Injection By Hand

Dependency

class Sword

{

 public void Hit(string target)

 {

 Console.WriteLine("Chopped {0} clean in half", target);

 }

}

Examples from Ninject - https://github.com/ninject/Ninject/wiki/

Note
- tight coupling
- hard to mock
- missing abstraction

Tag: 01

So how can we use DI ?
Dependency Injection By Hand

Examples from Ninject - https://github.com/ninject/Ninject/wiki/

Target

class Samurai

{

 readonly Sword sword;

 public Samurai()

 {

 this.sword = new Sword();

 }

...

Note
- tight coupling
- hard to mock
- missing abstraction

Tag: 01

...

 public void Attack(string target)

 {

 this.sword.Hit(target);

 }

}

So how can we use DI ?
Dependency Injection By Hand

Create Target

class Program

{

 public static void Main()

 {

 var warrior = new Samurai();

 warrior.Attack("the evildoers");

 }

}

Examples from Ninject - https://github.com/ninject/Ninject/wiki/

Note
- unable to inject different

implementation

To decouple we need to abstract ?

Things we need to do in order to use DI and IoC

- program with interfaces or abstract classes

- hosting class needs to use interfaces

- can receive any implementation

- can have real one for production

- can have mocked one for unit testing

- expose dependencies via constructor (constructor injection)

Abstraction

interface IWeapon

{

 void Hit(string target);

}

Tag: 02

So how can we use DI ?
Dependency Injection By Hand - Abstraction

Dependency

class Sword : IWeapon

{

 public void Hit(string target)

 {

 Console.WriteLine("Chopped {0} clean in half", target);

 }

}

Examples from Ninject - https://github.com/ninject/Ninject/wiki/

Note
- loosely coupled
- IoC support
- easy to mock

class Shuriken : IWeapon

{

 public void Hit(string target)

 {

 Console.WriteLine("Pierced {0}'s armor", target);

 }

}

So how can we use DI ?
Dependency Injection By Hand - Abstraction

Examples from Ninject - https://github.com/ninject/Ninject/wiki/

Target
class Samurai

{

 readonly IWeapon weapon;

 public Samurai(IWeapon weapon)

 {

 this.weapon = weapon;

 }

...

Note
- loosely coupled
- IoC support
- easy to mock

...

 public void Attack(string target)

 {

 this.weapon.Hit(target);

 }

}

So how can we use DI ?
Dependency Injection By Hand - Abstraction

Create Target

class Program

{

 public static void Main()

 {

 var warrior1 = new Samurai(new Shuriken());

 var warrior2 = new Samurai(new Sword());

 warrior1.Attack("the evildoers");

 warrior2.Attack("the evildoers");

 }

}
Examples from Ninject - https://github.com/ninject/Ninject/wiki/

Tag: 03

The following results will be printer to console output:

Pierced the evildoers armor.
Chopped the evildoers clean in half.

So how can we use DI ?
Dependency Injection By Hand - Abstraction

Examples from Ninject - https://github.com/ninject/Ninject/wiki/

- we have loosely coupling
- we have abstractions
- we have IoC support
- we have constructor injection
- we have dependency injection by hand

- what happens when our dependencies has dependencies on their own ?

Tag: 03

Great, but do I have to resolve every dependency by hand ?

DI Container to rescue!

IKernel kernel = new StandardKernel();

var samurai = kernel.Get<Samurai>();

Tag: 04

Ok, this works for concrete implementation, what about
interfaces ?

IKernel kernel = new StandardKernel();

var warrior = kernel.Get<IWarrior>();

We need DI container configuration.

Tag: 05

Configuration Practices Code, XML or Convention ?

Code

 - strongly-typed

 - refactoring and compiler support

 - easy to maintain

 - conditional bindings support

Note: You can mix configurations

Configuration Practices Code, XML or Convention ?

XML

 - hot-swap (no recompilation)

 - no refactoring or compiler support

 - verbose and hard to maintain

 - hard to enforce conditional bindings

Note: You can mix configurations

Configuration Practices Code, XML or Convention ?

Convention

 - hot-swap

 - conditional bindings support

 - hard to maintain

 - great deal of magic is involved

Note: You can mix configurations

Configuration using Code

IKernel kernel = new StandardKernel();

kernel.Bind<IWeapon>().To<Shuriken>();
kernel.Bind<IWarrior>().To<Samurai>();

var warrior = kernel.Get<IWarrior>();

Code
- strongly-typed
- refactoring and compiler support
- easy to maintain
- conditional bindings support

Patterns and Practices

- Injection Patterns

- Multi Injection

- Abstract Factory Pattern

- Facade Services (or Aggregate Service)

- Composition Root

Injection Patterns - Constructor Injection

Constructor Injection

public (IWeaponAction weaponAction)

- clean implementation

- not bound to specific DI container

- easy construct tests

Injection Patterns - Property Injection

Property Injection

[Inject]

public IWeapon Weapon {get; set; }

- hides implementation

- bound to specific DI container

- exposing internal architecture

Injection Patterns Method Injection

Method Injection

[Inject]

public void Arm(IWeapon weapon)

- hides implementation

- bound to specific DI container

- initialization logic needed

Multi Injection
Inject multiple objects bound to a particular type or interface

IKernel kernel = new StandardKernel();

kernel.Bind<IWeapon>().To<Shuriken>()
;

kernel.Bind<IWeapon>().To<Sword>();

kernel.Bind<IWarrior>().To<Samurai>();

var warrior = kernel.Get<IWarrior>();

public Samurai(List<IWeapon> weapons)

{

 this.weapons = weapons;

}

Tag: 06

Abstract Factory Pattern

- Abstract Factory is design pattern where an interface is
responsible for creating related objects without explicitly
specifying their concrete classes

- lightweight implementation (or constructed on runtime via
Dynamic Proxy)

- used for injecting optional services (gain performance by
reducing resolution time)

- The new operator is considered harmful (no IoC)

Tag: 07

Abstract Factory Pattern

public interface IDaggerFactory

{

 IDagger Create();

}

....

public Samurai(IDaggerFactory daggerFactory)

....

daggerFactory.Create().Hit(target);

....

Tag: 07

Facade Services (or Aggregate Services) Concept

- Factory Service is a design concept where an interface is
used to aggregate any number of services or factories to
overcome the constructor over-injection and possible
performance implications

- using more than 3-4 services in the constructor is a clear
sign that we should consider using facade service

- using constructor injection makes it easy to determine
what services should be aggregated

Tag: 08

Facade Services (or Aggregate Services) Concept

public interface IWeaponFactory
{
 IDagger CreateDagger();
 ISword CreateSword();
}
....
public Samurai(IWeaponFactory weaponFactory)
....
weaponFactory.CreateDagger().Hit(target);
weaponFactory.CreateSword().Hit(target);
....

Tag: 08

Composition Root

- Composition Root is a (preferably) unique location in an application where
modules are composed together. (M. Seemann)

- only composition root should have reference to DI container
- code relies on injection patterns but is never composed
- only applications should have Composition Roots, libraries and frameworks

shouldn't.
- entire object graph should be composed in the following entry points

(depends on the framework)
- console application Main method
- ASP.NET MVC & WebAPI applications - global.asax, IControllerFactory or

PreApplicationStartMethod
- etc.

Composition Root

WebAPI Example
private static readonly Bootstrapper bootstrapper = new Bootstrapper();
....
bootstrapper.Initialize(CreateKernel);
....
private static IKernel CreateKernel()
{
 var kernel = new StandardKernel();
 // Install Ninject-based IDependencyResolver into the Web API configuration set Web API Resolver
 GlobalConfiguration.Configuration.DependencyResolver = new NinjectDependencyResolver(kernel);
 return kernel;
}

What about memory management ?

- Some of the DI containers manage object lifecycle automatically and some have
object scopes

- Ninject DI there are
following scopes available
- Transient not managed by the Kernel no scope
- Singleton objects are disposed when Kernel is disposed
- Thread - objects are disposed when underlying Thread object is garbage collected.
- Request Web Request - objects are disposed at the end of the Web request

processing
- Named, Call & Parent - objects are disposed when their scope object is
- Custom Scope you manage object lifecycle

Tag: 09,10,11

Good and Bad Practices

- Good
- Extensibility
- Dynamic Proxy
- IoC of DI Container

- Bad
- Constructor Over-Injection
- Service Locator
- Non-Abstract Factories

Extensibility - Good Practices

- Work on another implementation in parallel

- Switch implementations dynamically

- Enforce SRP

- Produce clean and maintainable projects

Tag: 12

Dynamic Proxy - Good Practices

- Abstract Factories and Facade Services can be constructed on
the runtime by using the dynamically generated proxy classes

- Classes are created on application startup (only once) and
loaded into memory (AppDomain)

- Pros
- easy to implement
- lightweight no code at all

- Cons
- no ready-to-use implementation
- difficult to understand

Tag: 13

Dynamic Proxy - Good Practices

Usage

public interface IDaggerFactory

{

 IDagger Create();

}

....

kernel.Bind<IDaggerFactory>().ToFactory();

....

Tag: 13

Abstract Away the DI Container - Good Practices

-
container so use abstraction in order to switch from
one container to another

- abstract the container

- abstract the configuration

Constructor Over-Injection - Bad Practices

- -pattern

- hard to maintain

- slow resolution

- resolution of optional dependencies

- easy detect SRP violation

- Solution Facade Services

Service Locator Anti-Pattern - Bad Practices

- Service Locator is central registry used to obtain services
- Kernel.Get<IService>()

- Service Locator is Anti-Pattern because it hides class
dependencies, causing run-time errors rather then compile-
time errors M. Seemann
- run-time errors
- easy introduce breaking changes
- bound to specific DI container
- it violates SOLID principles ISP principle

- Solution Use Constructor Injection, Factories & Composition Root

Non-Abstract Factory - Bad Practice

- Non-Abstract Factory is bad practice because you
bound factory to concrete implementation

Non-Abstract Factory - Bad Practice

Usage

public interface IDaggerFactory
{
 IDagger Create(IMyDependency dep);
}

public class Dagger : IDagger
{
 public Dagger(IMyDependency dep)
 {
 }
}

Layered Architecture - GitHub Repo

1. Prerequisites
1. .Net 4.x

2. VS 2013

3. Git

2. Repository setup
1. git clone https://github.com/khorvat/DIPracticeLayeredArchitecture

2. git checkout master

3. git checkout tags/## (git checkout tags/01)

3. How to Run
1. Build Solution

2. Setup IIS

3. Open Command Prompt in repository root and run RunSample.cmd
1. Note: In case of IIS Express you will need to edit the RunSample and change the URL of the app

Note: Slides that have Tag marker in the top right corner follows the GitHub code samples.

Tag: ##

Layered Architecture with DI and IoC
Data Acce s s L a yer (D AL)

Impleme n ta tion

R epos ito r y

Impleme n ta tion

S e r vice

Impleme n ta tion

A S P.N E T W eb API A S P.N E T M V C Desktop Win Form / WPF .N E T Con s ole

Model

Impleme n ta tion

L
o

o
s

e
ly C

o
u

p
le

d
 -

L
o

a
d

e
d

b
y D

I c
o

n
ta

in
e

r

Model .Common

C o n t r a c ts

R epos ito r y.Common

C o n t r a c ts

S e r vice .Common

C o n t r a c ts

Cart - Layered Architecture

1. Cart.DAL
1. CartEntity

2. ProductEntity

2. Cart.Repository
1. Get Cart

2. Get Products

3. Add Product to Cart

4. Remove Product from Cart

3. Cart.Service
1. Get My Cart

2. Get Only Products InStock

3. Add Product to Cart With InStock Validation

4. Remove Product from Cart

Tag: 01

Layered Architecture IoC of the Repository

Data Acce s s L a yer (D AL)

Impleme n ta tion

R epos ito r y

Impleme n ta tion

R epos ito r y.Ex

Impleme n ta tion

S e r vice

Impleme n ta tion

A S P.N E T W eb API A S P.N E T M V C Desktop Win Form / WPF .N E T Con s ole

Model

Impleme n ta tion

L
o

o
s

e
ly C

o
u

p
le

d
 -

L
o

a
d

e
d

b
y D

I c
o

n
ta

in
e

r

Model .Common

C o n t r a c ts

R epos ito r y.Common

C o n t r a c ts

S e r vice .Common

C o n t r a c ts

Cart - IoC of the Repository

1. Cart.DAL
1. CartEntity

2. ProductEntity

2. Cart.Repository switched with Cart.Repository.Ex
1. Get Cart

2. Get Products With IsDeleted Filter

3. Add Product to Cart

4. Remove Product from Cart

3. Cart.Service
1. Get My Cart

2. Get Only Products InStock

3. Add Product to Cart With InStock Validation

4. Remove Product from Cart

Tag: 02

Layered Architecture IoC of the Service

Data Acce s s L a yer (D AL)

Impleme n ta tion

R epos ito r y

Impleme n ta tion

R epos ito r y.Ex

Impleme n ta tion

S e r vice

Impleme n ta tion

S e r vice.Ex

Impleme n ta tion

A S P.N E T W eb API A S P.N E T M V C Desktop Win Form / WPF .N E T Con s ole

Model

Impleme n ta tion

L
o

o
se

ly C
o

u
p

le
d

 -
L

o
a

d
e

d
b

y D
I c

o
n

ta
in

e
r

Model .Common

C o n t r a c ts

R epos ito r y.Common

C o n t r a c ts

S e r vice .Common

C o n t r a c ts

Cart - IoC of the Service

1. Cart.DAL
1. CartEntity

2. ProductEntity

2. Cart.Repository switched with Cart.Repository.Ex
1. Get Cart

2. Get Products With IsDeleted Filter

3. Add Product to Cart

4. Remove Product from Cart

3. Cart.Service switched with Cart.Service.Ex
1. Get My Cart

2. Get Only Products InStock with Valid Exp. Date

3. Add Product to Cart With InStock and Exp. Date Validation

4. Remove Product from Cart

Tag: 03

Cart - Layered Architecture

What have we demonstrated

1. How to setup Ninject DI container inside the ASP.NET WebAPI

2. How should we architecture the layers in order to make them
IoC ready

3. We can simply change the Layers as they are loosely coupled

Cart - Layered Architecture

What are practical use cases for this architecture

1. Have one team maintaining existing code while others are
working on the new implementation

2. Implement Mocks for whole layers for Unit testing

3. Switch DAL or ORM tool used to access the database

4. Switch file system providers (Local file system to Azure or
Amazon storage)

5. Switch caching providers (InMemory Cache to Redis Cache)

Thanks

Questions ?

- Kristijan Horvat

- kristijan@mono-software.com

- https://twitter.com/khorvat2

References
- https://github.com/khorvat/DependencyInjectionInPractice

- https://github.com/khorvat/DIPracticeLayeredArchitecture

- http://www.ninject.org/

- https://github.com/ninject/ninject

- http://lukewickstead.wordpress.com/2013/01/18/ninject-cheat-sheet/

- http://www.jeremybytes.com/Downloads/DependencyInjection.pdf

- http://blog.ploeh.dk/

- http://blog.ploeh.dk/2011/07/28/CompositionRoot/

- http://blog.ploeh.dk/2012/03/15/ImplementinganAbstractFactory/

- http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/

- http://blog.ploeh.dk/2014/05/15/service-locator-violates-solid/

- http://blog.ploeh.dk/2010/02/02/RefactoringtoAggregateServices/

- http://www.planetgeek.ch/2011/12/31/ninject-extensions-factory-introduction/

- http://www.martinfowler.com/articles/injection.html

